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Abstract—The emergence of distributed generation has made
a case for a deregulated, competitive, transactive energy market,
operating at the level of the traditional residential consumer.
These new energy players, prosumers, will interact as the larger
energy generators do under the supervision of Independent
System Operators (ISOs), but with their own Distributed System
Operators (DSOs). This work proposes a prosumer energy man-
agement scheme, broken into a day-ahead schedule and a real-
time adjustment, mirroring the ISO market structure. Within
this framework, a dynamic rate can be designed and tested for
the prosumer. A time-of-use (TOU) rate was combined with a
frequency based, real-time dynamic rate to produce a hybrid
rate that the prosumer can optimize for during its day-ahead
and real-time dispatch. This hybrid rate can be calculated every
one minute and applied autonomously from the grid frequency,
providing secondary frequency regulation and an incentive for
better solar management and use of energy storage. Such a
real-time rate is the first designed for price-reactive control. In
simulation, the real-time hybrid rate is compared to conventional
TOU and flat rates and the final daily energy costs are calculated
for a variety of residential load types with a realistic distributed
solar generation curve gathered from Pecan Street Inc. Dataport.
Under the one minute hybrid rate, the results indicate a near
zero energy bill can be achieved for a prosumer with day-time
load and smart use of energy storage.

Index Terms—Economic Dispatch, Microgrid, Autonomous,
Distributed, and Transactive Control, Energy Router, Energy Cell

I. INTRODUCTION

Increased penetration of renewables, especially distributed
generation (DG) onto the grid creates challenges in terms of
stability, reliability, and control. The California Independent
System Operator (CAISO) explains these challenges in terms
of its anticipated “Duck Curve” [1]. As the capacity of grid
connected solar increases in California, the predicted load
minus the expected renewable generation (net load), ramps
down during the mid-day and then sharply up in the late
afternoon as solar generation decreases and load reaches one of
its daily peaks. To maintain demand, more and more ramping
flexibility will be needed. Oversupply during the day is also
a concern.

Dynamic pricing has been proposed as a control mech-
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anism, [2][3] giving the prosumers agency to participate in
the market rather than solely respond as customers in the
one-directional legacy system. Integrating demand and supply
flexibility into the operation of the electricity system allows for
a more efficient market, predictable dynamic price response,
and optimal utilization of distributed energy resources (DERs)
[2]. Current schemes for residential prosumers include flat
rates, time-of-use (TOU) rates, net metering, critical peak
pricing, etc., [4] while researchers have begun to explore real-
time price reaction and transactive control [5][6]. Transactive
control is a mechanism for the Internet of Things or the Energy
Internet, enabling prosumers to compete with each other in
a deregulated market via a consumer-to-consumer commerce
model, similar to eBay [7][8].

On the power systems’ side, Distribution System Operators
(DSOs) have been proposed to be the facilitators of energy
transactions at the substation or even microgrid level, acting
as an interface between the existing Independent Service
Operator (ISO) or balancing authority and the owners and
operators of demand side assets (prosumers) [4]. At the
power electronics level, technologies such as the solid-state
transformer (SST) have been touted as an essential device for
the smart grid [9]. As a smart transformer, the SST operates
as the energy router of the smart grid, regulating power flow
to and from its microgrid at its point of common coupling
to the main grid. It provides isolation, islanding, voltage and
frequency control, and can measure the grid frequency [10].

An electricity rate that fluctuates in real-time is based on
supply and demand, is the product of a competitive market, and
reflects additional services provided to or purchased from the
grid, in effect reducing the anticipated duck curve. In such a
market, there will be a stronger business case to store or curtail
renewable generation when supply is high and demand is low.
Additionally, energy storage can be used to smooth expensive
load peaks. This paper explores the concept of using a one
minute, real-time frequency based rate on top of a baseline
TOU rate. While a true prosumer-to-prosumer transactive
market is still on the horizon, this real-time rate reflects an
intermediate or alternate step, allowing the grid frequency to
act as a price signal, autonomously determining the rate from
the utility or local distribution coordinator to the prosumer. The
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Fig. 1. Prosumer Energy Management Framework

prosumer’s response to such a variable rate (whether from a
deregulated market, a frequency based price, or a price signal
from a utility) has yet to be fully analyzed [11][12]. However,
there has been energy scheduling for day-ahead and TOU rates
[13][14]. This paper will consider a prosumer’s residential load
and solar curve patterns in determining the most economic
rate.

Using the grid frequency as a droop control has been
explored for microgrids [15]. As DERs increase, frequency
regulation will become an important grid service. As contrib-
utors to the variability of power flow on the grid, prosumers
should have a role in controlling the grid frequency, as
an ancillary service. Loads can be signaled to respond to
deviations or prosumers can respond to a real-time frequency
based price [16]. Previous work has shown that prosumers can
bring frequency deviations back to their nominal values after
small perturbations [17]. In the bulk power system, governor
response is used to balance instantaneous perturbations as
primary regulation and automatic generation control (AGC)
finds a generation-load balance as secondary regulation [18].
The response of loads and DER should be shared with the
synchronous generators. System frequency elasticity has been
defined along with a price droop signal in order to adjust
the sensitivity of DER response to changes in the system
frequency [19]. Using frequency to generate a real-time price
is an easy way to simulate what a future transactive price
may look like for a prosumer. In practice, it is an autonomous
signal that can be measured by the prosumer at their location
and requires no communications with other devices [16].

This paper explores the benefits of real-time, dynamic pric-
ing for residential prosumers. Section II will be the problem
set-up including the rate structure and linear programming
problem definition. Section III will be the simulation results
and Section IV will be the conclusion and future work.

II. PROBLEM SET-UP

A. Energy Management Design
Fig. 1 proposes a day-ahead and real-time energy man-

agement framework for a residential prosumer. While, the

prosumer’s response is purely reactive in this work (there are
no incentives for the prosumer to inject power onto the grid
or methods to negotiate a price), a similar structure may be
used for other types of hybrid rates or energy transactions and
negotiations among prosumers. In this analysis, the prosumer
uses linear programming to make a scheduled P

grid

reference
based on it’s known TOU prices and solar and load predictions
for one day. As the day progresses, the prosumer calculates the
real-time energy price by reading the grid frequency every one
second and processing and averaging the data to determine the
real-time price every one minute. The real-time price, which
the prosumer will ultimately be billed for, is the frequency
based price added to the existing TOU price for each minute.
At one minute intervals, the prosumer measures its current
energy storage state of charge (SOC), and current solar and
load values, allowing for errors between the forecasted and
actual amounts to be considered.

B. Hybrid Rate
A hybrid rate was constructed using a TOU rate plus a

frequency based rate. Frequency data measured every 0.10
seconds was obtained from FNET through CURENT, the
University of Tennessee, Knoxville, and Oak Ridge National
Laboratory. From the data, a one minute and a seven minute
moving average were calculated as shown in Fig. 2 and a price
was assigned to each frequency calculation as shown in Fig.
3. A new average was calculated every one minute for a total
of 1440 data points for one day. The baseline TOU price for
the hybrid rate was based on TOU rates from Southern Edison
(SE). With an off-peak rate of 0.12 $/kWh, the maximum and
minimum thresholds for the frequency based price were set
to ± 0.12 $/kWh to maintain symmetry and prevent the total
price from being negative. The price vs. frequency function in
Fig. 3 is based on previous work in [16].

Two hybrid rates were designed by adding the frequency
based price to the TOU SE baseline. One used the one
minute moving average and the other the seven minute moving
average. These two hybrid rates were compared to three other
commonly used rates: a flat rate, a TOU rate based from Duke
Energy Progress (DEP), and the TOU SE based from Southern
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TABLE I
RATES, PRICE/KWH

Rate Details

Flat Rate $0.20

TOU DEP Off-peak (8 p.m. - 11 a.m.): $0.12

On-peak (1 p.m. - 6 p.m.): $0.28

Shoulder: $0.22

TOU SE Off-peak (10 p.m. - 8 a.m.): $0.12

On-peak: $0.28

Seven Min Hybrid TOU SE ± $0.12 max

One Min Hybrid TOU SE ± $0.12 max
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Fig. 4. Electricity Rates

Edison. The TOU SE rate was chosen because it defined peak
hours to be during the challenging early evening hours of the
duck curve. The TOU DEP does not schedule it’s peak hours
during this time, but has a shoulder category during May, when
the load data was measured. For sake of comparison both TOU
rates were designed to have the same peak and off-peak price.
These rates are detailed in Table I and shown together in Fig.
4. For a flat, 1 kW daily load, all five rates are about the same:
$4.80 for the Flat Rate, $4.08 for the TOU DEP, $5.12 for the
TOU SE, $5.05 for the Seven Min Hybrid, and $5.11 for the
One Min Hybrid rate.

C. Optimization Formulation

Linear Programming was used to solve for the lowest
energy price to the prosumer, using a given rate, load, solar
photovoltaic (PV) curve, and energy storage device [13].
Implementation of a hybrid rate is proposed according to
Fig. 1, where linear programming would solve for the day-
ahead schedule using the known TOU price and then a
smart algorithm or artificial intelligence would measure the
frequency and device parameters, determine the frequency
based real-time price, and make adjustments to the day-ahead
schedule. In this work, linear programming was used to solve
for the total hybrid price (day-ahead plus real-time) in order to
compare the optimal outcome with other rates (TOU and flat
rate). Implementation of the hybrid rate would be expected to
near the mathematical optimum.

In this problem, min
x

{fTx}, the decision variables are
x = [P

grid

(t), P
pvused(t), Pcharge

(t), P
discharge

(t), SOC(t)].
The total cost of energy to the prosumer should be minimized
for one day according to the objective function

Min f =
TX

t=1

⌧C
grid

(t)P
grid

(t)

+ k(P
charge

(t) + P
discharge

(t)) (1)

For the equality constraints, the power balancing equation for
the prosumer is

P
grid

(t) = P
load

(t)� P
pvused(t) + P

charge

(t)

� P
discharge

(t) (2)

and the SOC for the battery, housed as an Energy Storage
System (ESS) is

SOC(t) = SOC
i

+
⌧

cap

tX

j=1

(P
charge

(j)�P
discharge

(j)) (3)

The inequality constraint is

P
pvused(t)  P

pv

(t) (4)

In (1), t is the time in minutes (where T is 1440 minutes
in one day), ⌧ is the time constant in hours, C

grid

(t) is
the cost of electricity (the electricity rate) in $/kWh, and
P
grid

(t) is the power in kW flowing through the meter,
while k is a constant in $/kW to account for the cost to
the lifetime of the battery, multiplied by the power in kW
charging or discharging, P

charge

(t) and P
discharge

(t). The
constant, k, was set to 0.0002 $/kW, estimated from partial
charges occurring in a 10 kWh ESS costing 200 $/kWh with
about 3000 full cycles until failure. Modeling a more detailed
battery cost function is the future work.

Equation (2) includes the load, P
load

(t) and PV generation,
P
pvused(t). In (3), SOC

i

is the initial SOC (at t = 0) measuring
0.3 and the cap is the capacity of the ESS at 10 kWh. As
shown in (4), if excess PV power is generated, but cannot
be stored or used, it is assumed to be curtailed or wasted in



TABLE II
UPPER AND LOWER BOUNDS FOR OPTIMIZATION VARIABLES, IN KW

EXCEPT FOR SOC (OUT OF 1)

Variable Lower Bound Upper Bound

Pgrid(t) 0 15
Ppvused (t) 0 10
Pcharge(t) 0 4

Pdischarge(t) 0 4
SOC(t) 0.3 0.99
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Fig. 5. Load and Solar Profiles, Source: Pecan Street Inc. Dataport 2016

this formulation. The P
pv

(t) is the generation potential and
P
pvused(t) is the portion after curtailment.
The upper and lower bounds for each of the x variables are

defined in Table II. There are no incentives to inject power onto
the grid, so P

grid

(t) is defined as one directional power flow
to the prosumer. Future work will consider the cases where
power flow is bi-directional.

III. SIMULATION RESULTS

Residential data from Pecan Street Inc. Dataport 2016 was
used to analyze various home load and solar curves and to
size energy storage for such homes. In Fig. 5, three houses
(A, B, and C) were selected in order to compare different
load patterns. The data was taken from three different houses,
measured every one minute, all located in Austin, Texas, in
May 2012. Each home has a corresponding PV generation
curve for each day, but one curve was chosen as shown in
Fig. 5, in order to compare the load types. The PV generation
was fairly similar between each house, as they are all located
in Austin. As commonly cited in the solar industry [20], two
days for one house have more similar load curves than two
different houses during the same day. House A has a night
focus, House B has a day focus, and House C has a mostly
equal, but day/evening focus pattern.

The lowest energy cost for each house was calculated ac-
cording to each of the five rates using the linear programming
equations. The results are shown in Table III. The energy cost

TABLE III
ENERGY COST FOR ONE DAY ($), SOURCE: PECAN STREET INC.

DATAPORT 2016

Load Load Pgrid: Load Cost to
Only with PV PV, ESS ESS

Flat
Rate

House A 4.6084 3.6126 2.0497 0.1875
House B 4.8136 2.4129 0.8584 0.186
House C 4.8448 2.6534 0.9688 0.2021

TOU
DEP

House A 3.6045 2.4285 1.2305 0.1875
House B 4.8345 1.7662 0.515 0.186
House C 4.709 1.9684 0.5813 0.2021

TOU SE
House A 5.0712 3.6787 1.4083 0.1999
House B 5.7746 2.4152 0.515 0.2182
House C 5.8769 2.8105 0.5813 0.2289

Seven
Min

Hybrid

House A 5.2043 3.6839 1.0847 0.2739
House B 6.0999 2.4282 0.1835 0.2555
House C 6.0755 2.7312 0.1962 0.2837

One
Min

Hybrid

House A 5.1859 3.7267 0.6837 0.337
House B 5.956 2.4646 0.0496 0.2729
House C 5.9958 2.7984 0.0687 0.3028

was optimized so that the sum of the third and fourth columns
were the lowest. The third column, the cost related to P

grid

,
is the amount the prosumer owes to its local energy provider,
while the fourth column, the cost to its Energy Storage System
(ESS), is an internal cost to the prosumer. The focus of the
simulation is to optimize for variable costs in order to study
the effects of load patterns and rate structures on energy
scheduling.

The total daily consumption was similar for each house.
House A had a load of 23.04 kWh, House B a load of 24.07
kWh, and House C a load of 24.22 kWh, as is shown for the
flat rate with House A having the lowest price for its load
only. PV generation was 21.63 kWh. With the addition of
PV (the second column), House A became more expensive
than the other houses. House B and C were able to utilize the
majority of their PV generation because more of their energy
consumption occurred during the day. Adding an ESS did help
House A, as shown in the third column, but the benefits were
much greater to the other two houses, who could store most
of their excess solar in a 10 kWh battery ESS. House A would
need a larger ESS to see these benefits.

The P
grid

cost to the prosumer did not fluctuate between
the TOU rates for House B and C. There was enough PV
generation and ESS capacity during the peak and shoulder
hours that the difference between these two rates did not affect
the total cost to the prosumer.

By far, the hybrid rates proved to be the most economical
to all three houses. The advantage of such a dynamic rate is
that high and low prices are distributed more evenly instead
of being clumped together during peak and off-peak hours,
allowing for more economical use of energy storage. The cost
to ESS is slightly higher during the hybrid rates than the other
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Fig. 6. SOC for House C, Source: Pecan Street Inc. Dataport 2016

rates, as a result. Despite the increase of Cost to ESS, the one
minute hybrid rate is the most economical, charging $0.4096 to
House B and $0.0687 to House C. The strength of this rate is
that it can essentially lower the prosumer’s bill to zero while
providing one minute frequency regulation and maintaining
smart use of energy storage.

In Fig. 6, the SOC is plotted for House C for each of
the rates. Compared to the TOU and flat rates, the hybrid
rates encourage the ESS to charge and discharge during the
morning, increasing the time it is used for the day, and
lowering the total energy cost to the prosumer. There are two
one minute hybrid rates graphed in Fig. 6. The first, f1, is
the one minute hybrid rate in the simulation. The second, f2,
uses frequency data from the following day. The energy prices
using a second frequency curve for the one minute hybrid
rate are similar: $0.5089 for House A, $0.131 for House B,
and $0.1567 for House C. Unlike the other rates, the f2 rate
requires less charging during the second half of the day for
House C (Fig. 6), possibly indicating that a smaller ESS could
be used.

IV. CONCLUSION

As shown in this work, real-time, dynamic prices benefit the
prosumer and create an economical case for energy storage.
Prosumers with load and PV save more by using an ESS under
a real-time one minute or seven minute hybrid rate than under
a standard TOU rate. As renewable generation grows, PV pen-
etration onto the grid will become more prevalent, contributing
to the duck curve. To solve this problem, prosumers must
be disincentivized to inject their excess generation onto the
grid. By responding to a real-time rate that reflects current
supply and demand, prosumers will see more savings with
energy storage and be incentivized to help balance the grid.
The grid frequency provides a signal for energy imbalance and
is an easy, autonomous way to construct a real-time price and
provide ancillary services. Similar to the energy markets of
ISOs, this work proposes that prosumers respond to dynamic

markets in a similar fashion: a day-ahead schedule for known
energy transactions, such as the TOU rate, and a real-time
adjustment for grid balancing, via a real-time price.

Future work will use additional data to prove the frequency
based pricing concept and consider the role of DSOs and
mechanism for grid balancing in a future grid with high DERs.
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